TABLE 1. Description of the input concentrations and of the program output. See "**Model Reactions**" for parameter definitions and [1] for more details.

Concentration Description

[ATP]	Concentration of ATP
[ADP]	Concentration of ADP
[<i>Pi</i>]	Concentration of inorganic phosphate
[<i>P</i>]	Concentration of free profilin (not bound to G-actin)

Variable Description

- A_c Actin critical concentration. At steady state, A_c is equal to the total concentration of free monomeric actin (sum of all nucleotide forms): $A_c = [T] + [D + [I] + [A]$ (see "**Model Reactions**")
- k_{ON} net rate of polymerization per filament or steady state flux of the subunit exchange: $k_{ON} = k_{OFF}$
- *g_f* Fraction of filament ends free (not bound to profilin, sum of all nucleotide forms)

 $k_1 = k_{Pi_+} \cdot [Pi]$ $k_2 = k_{Pi_-}$

Fractions of different nucleotide forms in the free monomeric actin pool

r_A	$= [A] / [A_c]$	fraction of the form <i>A</i> in the free monomeric actin pool
r_T	$= [T] / [A_c]$	fraction of the form <i>T</i> in the free monomeric actin pool
r_I	$= [I] / [A_c]$	fraction of the form <i>I</i> in the free monomeric actin pool
<i>r</i> _D	$= [D] / [A_c]$	fraction of the form <i>D</i> in the free monomeric actin pool

Acceleration factors

S_H	$= r_{He} \cdot (1 + r_H \cdot [P] / K_{dbT})$
S_{Pi}	$= r_{Pie} \cdot (1 + r_{Pi} \cdot [P] / K_{dbI})$
SA	$= (1 + r_{A+} \cdot [P] / K_{dA}) = (1 + r_{A-} \cdot [P] / K_{dbA})$
S_T	$= (1 + r_{T_{+}} \cdot [P] / K_{dT}) = (1 + r_{T_{-}} \cdot [P] / K_{dbT})$
S_I	$= (1 + r_{I+} \cdot [P] / K_{dI}) = (1 + r_{I-} \cdot [P] / K_{dbI})$
S_D	$= (1 + r_{D+} \cdot [P] / K_{dD}) = (1 + r_{D-} \cdot [P] / K_{dbD})$

Factors defining binding of profilin the barbed ends of the corresponding type

q_A	$= (1 + [P] / K_{dbA})$
q_T	$= (1 + [P] / K_{dbT})$
q_I	$= (1 + [P] / K_{dbl})$
q_D	$= (1 + [P] / K_{dbD})$

Critical concentrations for pure forms

A_{cA}	critical o	concentrations	for pure	A form:	$A_{cA} =$	k_{A-}/k_{A}	A+
4	• • • 1		c -	T (1 / 1	

- A_{cT} critical concentrations for pure *T* form: $A_{cT} = k_{T-}/k_{T+}$
- A_{cI} critical concentrations for pure *I* form: $A_{cI} = k_{I-}/k_{I+}$

 A_{cD} critical concentrations for pure *D* form: $A_{cD} = k_{D-}/k_{D+}$

Fractions of different nucleotide forms in the free barbed ends pool

g_T	fraction of the uncapped ATP-bound ends in the uncapped (free) ends pool
g_D	fraction of the uncapped ADP-bound ends in the uncapped pool
g _I	fraction of the uncapped ADP-Pi-bound ends in the uncapped pool
g_A	fraction of the uncapped nucleotide-free ends in the uncapped pool

Model variables

(see [1] for details and the other output variables including indexed factors *f*, *C*, and *U*)

α β	$= S_H + g_f^{-1} \cdot \lambda/(1-\lambda);$ = $S_{Pi} + g_f^{-1} \cdot \delta/(1-\delta);$
$\lambda \ \delta$	$= 1 - (k_H / (2 \cdot k_{ON})) \cdot ((1 + 4 \cdot k_{ON} / k_H)^{1/2} - 1) = 1 - ((k_1 + k_2) / (2 \cdot k_{ON})) \cdot ((1 + 4 \cdot k_{ON} / (k_1 + k_2))^{1/2} - 1)$
$egin{array}{c} \gamma \ \psi \ \phi \end{array}$	$= \frac{k_2 \cdot (S_{Pi} - S_H)}{(k_H - k_1)}$ = $\frac{k_1}{(k_1 + k_2)}$ = $\frac{(k_H - k_1)}{(k_H - (k_1 + k_2))} = \frac{(1 + k_2)}{(k_H - (k_1 + k_2))}$
Niter	number of iterations used to achieve desired accuracy

Please check for updates: we plan to update our output for a more user-friendly list more relevant to the physical properties of actin filament and polymerization mechanisms

1. Yarmola, E.G., Dranishnikov, D.A. and Bubb, M.R. 2008. Effect of Profilin on Actin Critical Concentration: A Theoretical Analysis. *Biophys. J.* 95: 5544–5573.